博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
阅读量:5058 次
发布时间:2019-06-12

本文共 2948 字,大约阅读时间需要 9 分钟。

题目链接

思路


 

斜率优化DP

我们知道, 有些DP方程可以转化成DP[i]=f[j]+x[i]的形式,其中f[j]中保存了只与j相关的量。这样的DP方程我们可以用单调队列进行优化,从而使得O(n^2)的复杂度降到O(n)。 可是并不是所有的方程都可以转化成上面的形式,比如dp[i]=dp[j]+(x[i]-x[j])*(x[i]-x[j])。如果把右边的乘法化开的话,会得到x[i]*x[j]的项。这就没办法使得f[j]里只存在于j相关的量了。于是上面的单调队列优化方法就不好使了,所以我们需要一种新的优化方法,叫做
斜率优化。 拿本题来说,我们设dp[i]表示装到第i个玩具的时候最少的花费,sum[i]表示前i个玩具的长度和。于是方程就是: dp[i]  = min{ dp[j] + [i+sum[i]-(j+1+sum[j])-L]
2 }; 题目的N<=50000,二维铁定超时了。我们就来看看斜率优化如何做到从O(n^2)复杂度降到O(n)。
分析: 我们假设k<j<i。如果在j的时候决策要比在k的时候决策好,那么也是就是dp[j] + [i+sum[i]-(j+1+sum[j])-L]
< dp[k] + [i+sum[i]-(j+1+sum[k])-L]
2。(因为是最小花费,所以优就是小于) 两边移项一下得到:[dp[j]+(j+1+sum[j])^2-(dp[k]+(k+1+sum[k])^2)]/(2*( (j+1+sum[j])-(k+1+sum[k]) )) < (i + sum[i]-L)。我们把dp[j]-num[j]^2看做是yj,把2*num[j]看成是xj。 那么不就是(yj-yk)/(xj-xk) < A[i]么?   左边是不是斜率的表示? 那么(yj-yk)/(xj-xk) < A[i]说明了什么呢?  我们前面是假设j的决策比k的决策要好才得到这个表示的,那么
g[j,k]=(yj-yk)/(xj-xk) < A[i]代表这j的决策比k的决策要更优
斜率优化在于:
①设k<j<i,如果g[i,j] < g[j,k],那么j点便永远不可能成为最优解
,可以直接将它踢出我们的最优解集。‘ 为什么呢?我们假设g[i,j] < A[i],那么就是说i点要比j点优,排除j点。如果g[i,j] >= A[i],那么j点此时是比i点要更优,但是同时g[j,k]>g[i,j]>A[i]。这说明还有k点会比j点更优,同样排除j点。排除多余的点,这便是一种优化! 由于我们排除了g[i,j] < g[j,k]的情况,所以整个有效点集呈现一种下凸性质,即k j的斜率要小于j i的斜率。这样,从左到右的斜率之间就是单调递增的了,所以我们就可以对g维护一个单调队列。 同时,
函数A[i]也要具有单调递增的特性,所以第二个优化就在于:
②如果单调队列的头两个点为i, j,斜率g[j, i] < A[i],则说明j优于i,并且由于A单调递增,所以g[j,i]恒小于A[],所以可以直接把i排除掉。 于是对于这类题斜率优化做法可以总结如下: 1,用一个单调队列来维护解集。 2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的下凸性质,即如果g[d,c]<g[c language=",b"][/c],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。 3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<A[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。  

 

代码

  [cpp] #include <iostream> #include <cstdio> #include <cmath> #include <algorithm> #include <string> #include <cstring> #include <vector> #include <queue> #define MID(x,y) ((x+y)/2) #define MEM(a,b) memset(a,b,sizeof(a)) #define REP(i, begin, end) for (int i = begin; i <= end; i ++) using namespace std; long long dp[50005], sum[50005]; vector <int> Q; int n, L; inline long long getDP(int i, int j){ return dp[j] + (i+sum[i]-(j+1+sum[j])-L) * (i+sum[i]-(j+1+sum[j])-L); } inline double getUP(int j, int k){ return (double)dp[j] + (double)(j+1+sum[j]) * (double)(j+1+sum[j]) - ((double)dp[k] + (double)(k+1+sum[k]) * (double)(k+1+sum[k])); } inline double getDOWN(int j, int k){ return 2.0 * ((j+1+sum[j]) - (k+1+sum[k])); } inline double getRIGHT(int i){ return (double)(sum[i] + i - L); } inline double slope(int j, int k){ return getUP(j, k) / getDOWN(j, k); } int main(){ scanf("%d %d", &n, &L); sum[0] = 0, dp[0] = 0; for (int i = 1; i <= n; i ++){ scanf("%lld", &sum[i]); sum[i] += sum[i-1]; } Q.clear(); Q.push_back(0); for (int i = 1; i <= n; i ++){ while((int)Q.size() > 1 && slope(Q[1], Q[0]) <= getRIGHT(i)) Q.erase(Q.begin()); int tmp = Q[0]; dp[i] = getDP(i, Q[0]); while( (int)Q.size() > 1 && slope(Q[(int)Q.size()-1], Q[(int)Q.size()-2]) >= slope(i, Q[(int)Q.size()-1]) ) Q.pop_back(); Q.push_back(i); } printf("%lld\n", dp[n]); return 0; } [/cpp]

转载于:https://www.cnblogs.com/AbandonZHANG/p/4114344.html

你可能感兴趣的文章
IO—》Properties类&序列化流与反序列化流
查看>>
【蓝桥杯】PREV-21 回文数字
查看>>
html 简介
查看>>
python使用上下文对代码片段进行计时,非装饰器
查看>>
js中比较实用的函数用法
查看>>
安装预览版镜像后无法检测到预览版更新的解决方案
查看>>
【bzoj5099】[POI2018]Pionek 双指针法
查看>>
别让安全问题拖慢了 DevOps!
查看>>
JAR打包和运行
查看>>
session如何保存在专门的StateServer服务器中
查看>>
react展示数据
查看>>
测试计划
查看>>
idea设置自定义图片
查看>>
[高级]Android多线程任务优化1:探讨AsyncTask的缺陷
查看>>
选择器
查看>>
rownum 的使用
查看>>
Mysql与Oracle 的对比
查看>>
MVC系列博客之排球计分(三)模型类的实现
查看>>
npm安装
查看>>
阅读笔记02
查看>>